Spacecraft charging via numerical simulations

G.L. Delzanno

Collaborators: C.S. Meierbachtol, J.D. Moulton, D. Svyatsky, L.J. Vernon, J.E. Borovsky, M.F. Thomsen

Outline

- Motivation
- Design considerations for plasma-material interaction PIC codes
 - Curvilinear PIC (CPIC)
- Selected examples
- Conclusions

Spacecraft are critical infrastructure threatened by space weather

- Society increasingly rely on spacecraft technology
 - ~1000 sc around Earth
 - ~250 commercial communication sc, \$75B investment, \$25B/year revenue (+consumer surplus)
- Spacecraft anomalies are common
 - Mild to catastrophic
 - Sometimes associated with environment
 - Very hard to pinpoint origin
 - Seek statistical correlation with data
- Surface charging primarily on night side
 - Link with substorms: Kp and MLT dependence
 - Correlation with 5-10 keV population [Thomsen et al, SW13]
- Simulations to identify probable cause
 - Need environment and sophisticated charging tools

Choi et al. 2011

Outline

- Motivation
- Design considerations for plasma-material interaction PIC codes
 - Curvilinear PIC (CPIC)
- Selected examples
- Conclusions

Plasma-material interaction (PMI) is a multiscale problem, traditionally studied with PIC

Collisionless, Vlasov-Poisson model:

$$\frac{\partial f_{\alpha}}{\partial t} + v \cdot \nabla f_{\alpha} + \frac{\vec{F}_{\alpha}}{m_{\alpha}} \cdot \nabla_{v} f_{\alpha} = 0$$

$$\vec{F}_{\alpha} = q_{\alpha} \left(-\nabla \phi + \mathbf{v} \times \mathbf{B}_0 \right)$$

$$-\epsilon_0 \nabla^2 \phi = \rho = \sum_{\alpha} q_{\alpha} \left[\int f_{\alpha} d^3 v \right]$$

Particle-In-Cell (PIC) cycle

PIC

- Macroparticles
- Computational grid
- Key PIC elements: mesh, solver, mover
- Multiscale: Runs can take hours/days/weeks depending on the problem!

For the field solver, one would want a NON-UNIFORM, structured mesh in a PMI code

- Uniform vs Non-Uniform
 - Avoid small features setting grid scale

Uniform mesh

Structured vs Unstructured

easy to locate neighbor

Needs connectivity table

Non-uniform mesh

- Unstructured meshes: flexibility
- Faster solvers on structured meshes
- x5-10 faster for a multigrid solver

MacLachlan et al, JCP 08

For the particles, one would want a UNIFORM, structured mesh in a PMI code

- Uniform vs Non-Uniform
 - Avoid particle-tracking
 - Tracking: x3-5 slower on unstructured mesh

Competitors move particles in physical space

Summary of design choices

Wish-list

- Solver: Non-uniform, structured mesh
- Particles: Uniform, structured mesh
- Parallelization

Curvilinear PIC (CPIC) developed at LANL follows these design choices and combines them with modern algorithms to tackle a broader set of problems

PIC with non-uniform mesh for solvers but uniform mesh for particles is possible with coordinate transformation

- Body-fitted logical to physical space mapping
- Coordinate transformation: $\mathbf{x} = \psi(\boldsymbol{\xi})$
 - Physical space variables $\mathbf{x} = (x, y, z)$
 - Logical space variables $\boldsymbol{\xi} = (\xi, \eta, \zeta)$

Structured meshes, fast solvers

Geometry independent

- Metric elements
 - Jacobi matrix and its inverse, metric tensor
 - Operators in logical space:

$$\nabla_{\mathbf{x}}^{2} \Phi(\mathbf{x}) = \frac{1}{J} \frac{\partial}{\partial \xi^{\alpha}} \left(J g^{\alpha \beta} \frac{\partial \Phi(\boldsymbol{\xi})}{\partial \xi^{\beta}} \right)$$

Complex objects&structured mesh require multi-block meshes

- Simple geometries easy to handle
- Complex geometries require mesh generators
 - Developed in CFD community
 - Many for unstructured meshes single-block mesh
 - Commercially available: structured mesh generators
 - Cad files → mesh

Mesh mimicking the VanAllen Probes sc

Multi-block PIC is far from trivial ...

- Many challenges
- Mesh
 - Locally structured, globally unstructured
 - Inter-block face, coordinate orientation
 - Many-block junction points
- Field solver
 - Mimetic discretization [Lipnikov et al., JCP 04]
- Particles
 - Needs to know block
 - More info to be communicated among processors
 - New block orientation

Many-block junction

Internal boundary

... but these challenges have been met in the new version of CPIC

Outline

- Motivation
- Design considerations for plasma-material interaction PIC codes
 - Curvilinear PIC (CPIC)
- Selected examples
- Conclusions

Successful verification on simple charging problem

- Charging of a sphere in a plasma
- Analytic solution exists
- CPIC with multi-block mesh
- Good agreement with theory: collected currents, symmetry and plasma screening

Probing the Earth's magnetosphere with an electron gun

- Goal: establish connectivity of magnetic field lines from the magnetosphere to the ionosphere
- High-power electron beam from magnetospheric spacecraft

Spacecraft charging is a big problem: I_e~µA, I_B~.1 A

$$\frac{dQ_{sp}}{dt} = I_b^e + I_e^{bg} + I_i^{bg} + I_e^{cont} + I_i^{cont}$$

The beam returns to the spacecraft if spacecraft charging cannot be mitigated

Charging mitigation with a plasma contactor, used to increase electron collection ...

Plasma contactor: provides a high density plasma reservoir

... would not work!

$$I_b/I_{cont}=2$$

- PIC simulations: contactor, spacecraft and beam
- Contactor fired before beam
 - 3 initial configurations with different size of contactor cloud
- Fire electron beam
 - with contactor on
- Contactor fails to draw a large current from bg

In a different parameter regime, I_b/I_{cont} <1, the beam can be emitted

$$\frac{dQ_{sp}}{dt} = I_b^e + I_e^{bg} + I_i^{bg} + I_e^{cont} + I_i^{cont}$$

The physical explanation is the Child-Langmuir law: when the contactor cloud is sufficiently large, it emits more positive charge than the beam negative charge

Planar geometry: space-charge limited

Conclusions:

Curvilinear PIC (CPIC)*: a flexible, fully kinetic, 3D electrostatic PIC code in general curvilinear geometry for plasma-material interaction studies

- Features:
 - Optimal design choices
 - Non-uniform, structured meshes: fast solvers
 - Curvilinear formulation: particles move in uniform mesh
 - Optimal, scalable solver based on multigrid
 - Parallelized
 - Multi-block meshes
 - Enables tackling a broad set of plasma-material interaction problems
- *Delzanno et al, IEEE Trans. Plasma Science (2013); Meierbachtol et al, in preparation (2016)